SEMAINE 18

du 4 au 8 mars 2024

► Espaces vectoriels (1)

- notion d'espace vectoriel sur un corps $\mathbb K$ égal à $\mathbb R$ ou $\mathbb C$, vecteurs, scalaires, combinaisons linéaires;
- exemples "prototypes" de \mathbb{K} -e.v : \mathbb{K}^n , $\mathbb{K}[X]$, $\mathbb{K}_n[X]$, $\mathcal{M}_{n,p}(\mathbb{K})$, E^X lorsque E est un e.v et X un ensemble quelconque, produit cartésien d'espaces vectoriels;
- applications linéaires, endo/iso/automorphismes (ensembles $\mathcal{L}(E,F)$, GL(E,F));
- formes linéaires;
- somme, composée d'applications linéaires;
- structures d'e.v sur $\mathcal{L}(E,F)$, d'anneau sur $\mathcal{L}(E)$, de groupe sur GL(E);
- sous-espaces vectoriels, droite engendrée par un vecteur;
- image et noyau d'une application linéaire, lien à l'injectivité et à la surjectivité;
- intersection de deux s.e.v;
- s.e.v engendré par une partie (notation $\operatorname{Vect}(A)$).

★Aucune connaissance n'est exigible des étudiants sur les sujets suivants : sommes (directes ou non) de s.e.v, projecteurs, symétries, familles libres ou liées, dualité, dimension.

► Questions de cours (démonstrations)

- tout énoncé ou définition est exigible;
- la composée de deux applications linéaires est linéaire;
- l'inverse d'une bijection linéaire est linéaire;
- l'intersection de deux s.e.v d'un même e.v en est un s.e.v;
- toute forme linéaire non nulle est surjective.