Polynômes

Arithmétique sur les polynômes

- 1. Soit $n \geq 2$. Effectuer la division euclidienne de A par B dans $\mathbb{K}[X]$, lorsque : (a) $A = X^3 + X^2 X + 1$, B = X 1; (e) $A = X^{n+2} + X^{n+1} X^n$, $B = X^3 2X + 1$;
 - (a) A = X + X X + 1, B = X 1, (b) $A = X^4 3X^3 + 4X^2 1$, $B = X^2 + X + 1$; (f) $A = (X 3)^{2n} + (X 3)^{2n$ (f) $A = (X-3)^{2n} + (X-2)^n - 2, B = (X-2)^2;$
- 2. Soit $P = X^6 2X^5 8X^4 22X^3 53X^2 56X 20$.
 - (a) Calculer le reste de la division euclidienne de P par $X^2 + 1$.
 - (b) Calculer P(i).
- 3. Soit $P \in \mathbb{K}[X]$.
 - (a) Démontrer que P-X divise P^k-X^k pour tout $k \ge 1$.
 - (b) En déduire que P X divise $P \circ P P$.
 - (c) Conclure en démontrant que P-X divise $P \circ P-X$.
- 4. Déterminer le pgcd des polynômes $X^5 + X^3 + X^2 + 1$ et $2X^3 + 1$.
- 5. (a) Soient $a, b \in \mathbb{C}$ tels que $a \neq b$ et soit $P \in \mathbb{C}[X]$. Déterminer le reste de la division euclidienne de P par (X-a)(X-b).
 - (b) Soit $\varphi \in \mathbb{R}$. Déterminer le reste de la division euclidienne de $(\cos \varphi + X \sin \varphi)^n$ par $X^2 + 1$.

Racines

- 1. Déterminer tous les polynômes $P \in \mathbb{C}[X]$ tels que $\forall z \in \mathbb{C}, P(z) = \overline{z}$.
- 2. Soit I un intervalle de \mathbb{R} non vide, non réduit à un point et f,g deux fonctions polynomiales telles que $\forall x \in I$, f(x)g(x) = 0. Démontrer que f = 0 ou g = 0. Ce résultat s'applique-t-il aux fonctions non polynomiales?
- 3. Résoudre dans $\mathbb C$ les systèmes suivants :

(a)
$$\begin{cases} x+y = 3 \\ x^2+y^2 = 5 \end{cases}$$
; (b)
$$\begin{cases} x+y+z = 1 \\ x^2+y^2+z^2 = 9 \\ \frac{1}{x}+\frac{1}{y}+\frac{1}{z} = 1 \end{cases}$$

- 4. Soit $P \in \mathbb{K}[X]$ tel que P(0) = 0 et $P(X^2 + 1) = P^2 + 1$.
 - (a) On considère la suite définie par récurrence par $u_0 = 0$ et $u_{n+1} = u_n^2 + 1$ pour $n \ge 0$. Démontrer que, pour tout $n \in \mathbb{N}$, $P(u_n) = u_n$.
 - (b) Que peut-on en déduire sur le polynôme P?
- 5. Soient $n, p \in \mathbb{N}^*$. Démontrer que :

$$(X^n - 1) \wedge (X^p - 1) = X^{n \wedge p} - 1.$$

- 6. Soient x, y, z trois complexes non nuls tels que x + y + z = 0 et $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0$. Montrer que |x| = |y| = |z|.
- 7. Soit $n \in \mathbb{N}$. Le polynôme

$$P_n = \sum_{k=0}^n \frac{\mathbf{X}^k}{k!}$$

possède-t-il une racine multiple?

Dérivation

- 1. Résoudre dans $\mathbb{C}[X]$ l'équation P(3X) = P' + 5P''.
- 2. Déterminer tous les polynômes $P \in \mathbb{K}[X]$ tels que P(1) = 1, P'(1) = 0, P''(1) = 3 et $P^{(n)}(1) = 0 \text{ pour } n \ge 3.$
- 3. Démontrer que pour tout $n \in \mathbb{N}^*$, $(X-1)^3$ divise le polynôme

$$P_n = nX^{n+2} - (n+2)X^{n+1} + (n+2)X - n.$$

4. Déterminer tous les polynômes $P \in \mathbb{R}[X]$ tels que

$$\forall k \in \mathbb{Z}, \int_{k}^{k+1} P(t) dt = k+1.$$

5. Soit $P \in \mathbb{K}[X]$. Démontrer que

$$P(X+1) = \sum_{n=0}^{+\infty} \frac{1}{n!} P^{(n)}.$$

- 6. Déterminer tous les polynômes divisibles par leur polynôme dérivé.
- 7. Soit $P \in \mathbb{R}[X]$ un polynôme scindé de degré $n \geq 2$. Démontrer que P' est scindé.

Polynômes irréductibles

- 1. Décomposer en produit de facteurs irréductibles sur R les polynômes suivants :
 - $X^3 + 1$; (f) $X^4 - X^2 - 12$: (a)
 - (g) $X^6 + 1$; (b) $X^8 + 1$;

 - (c) $X^4 + 1$; (d) $X^6 1$; (d) $X^8 + X^4 + 1$; (i) $X^{2n+1} 1 \ (n \ge 1)$; (e) $X^4 + X^2 + 1$; (j) $1 + X^3 + X^6 + X^9$.
- 2. On pose:

$$P = X^6 + X^5 + 3X^4 + 2X^3 + 3X^2 + X + 1.$$

- (a) Vérifier que i est racine multiple de P.
- (b) En déduire la décomposition de P sur R.
- 3. Démontrer que $X^2 + X + 1$ divise $X^8 + X^4 + 1$ dans $\mathbb{C}[X]$.
- 4. Quelle est la décomposition en produit d'irréductibles de $X^8 1$ dans $\mathbb{R}[X]$?
- 5. Soient $\theta \in \mathbb{R}$ et $n \in \mathbb{N}^*$. Décomposer en produit de polynômes irréductibles dans $\mathbb{C}[X]$, puis dans $\mathbb{R}[X]$ le polynôme :

$$P = X^{2n} - 2X^n \cos(n\theta) + 1.$$

Approfondissements

- 1. On dit qu'un sous-groupe de $\mathbb{K}[X]$ en est un idéal si $\forall P \in \mathbb{K}[X], \forall Q \in I, PQ \in I$.
 - (a) Démontrer que pour tout $A \in \mathbb{K}[X]$, $A\mathbb{K}[X] = \{AP \mid P \in \mathbb{K}[X]\}$ est un idéal de $\mathbb{K}[X]$.
 - (b) On fixe dans cette question un idéal I de $\mathbb{K}[X]$ différent de $\{0\}$.
 - i. Justifier l'existence de $r = \min\{\deg P \mid P \in I \setminus \{0\}\}$.
 - ii. Montrer qu'il existe un unique polynôme unitaire $U \in I$ de degré r.
 - iii. Démontrer que $I = U\mathbb{K}[X]$.
- 2. Soit $(P,Q) \in \mathbb{Z}[X]^2$ tel que $P \wedge Q = 1$. Pour $n \in \mathbb{N}$, on pose $u_n = P(n) \wedge Q(n)$. Montrer que la suite $(u_n)_n$ est périodique.
- 3. Une somme de Newton. Soient a, b et c les racines complexes du polynôme $P = X^3 2X + 5$.
 - (a) Calculer $S = a^4 + b^4 + c^4$.
 - (b) Trouver un polynôme de degré trois à coefficients entiers dont a^2, b^2 et c^2 sont les racines.

- 4. (a) Soit $n \in \mathbb{N}^*$. Factoriser sur \mathbb{C} le polynôme $P_n = X^{n-1} + X^{n-2} + \cdots + X + 1$.
 - (b) En déduire une expression simple de

$$A_n = \prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right) .$$

(c) Donner une expression simple de

$$B_n = \prod_{k=0}^{n-1} \sin\left(\frac{k\pi}{n} + \theta\right).$$

(d) On pose $\omega = e^{\frac{2i\pi}{n}}$. Calculer

$$C_n = \prod_{k=0}^{n-1} \prod_{\ell \neq k} \left(\omega^k - \omega^\ell \right) .$$

- 5. Soient $a, b \in \mathbb{R}_+^*$. Déterminer les entiers $n \in \mathbb{N}$ tels que $X^2 (a^2 + b^2)$ divise $X^{2n} (a^n + b^n)^2$.
- 6. (a) Soit $P \in \mathbb{Q}[X]$ un polynôme irréductible. Démontrer que P n'admet pas de racine double dans \mathbb{C} .
 - (b) Soit $P \in \mathbb{Q}[X]$ un polynôme de degré 5 admettant une racine multiple dans \mathbb{C} . Démontrer que P admet une racine dans \mathbb{Q} .
- 7. Soient P,Q deux polynômes unitaires de $\mathbb{R}[X]$ à coefficients dans \mathbb{R}_+ tels que :

$$PQ = \sum_{k=0}^{n-1} X^k \,.$$

- (a) Donner un exemple non trivial de telle décomposition.
- (b) Démontrer que les coefficients de P et Q sont dans $\{0,1\}$.

Exercices CCINP

- 85 | 1. Soient $n \in \mathbb{N}^*$, $P \in \mathbb{R}_n[X]$ et $a \in \mathbb{R}$.
 - (a) Énoncer, sans démonstration, la formule de Taylor.
 - (b) Soit $r \in \mathbb{N}^*$. En déduire que : a est une racine de P d'ordre de multiplicité r si et seulement si $P^{(r)}(a) \neq 0$ et $\forall k \in [0, r-1]$, $P^{(k)}(a) = 0$.
 - 2. Déterminer deux réels a et b pour que 1 soit racine double du polynôme $P = X^5 + aX^2 + bX$ et factoriser alors ce polynôme dans $\mathbb{R}[X]$.
- 87 Soient a_0, a_1, \dots, a_n n+1 réels deux à deux distincts.
 - 1. Montrer que si b_0, b_1, \cdots, b_n sont n+1 réels quelconques, alors il existe un unique polynôme P vérifiant

$$\deg P \leqslant n \text{ et } \forall i \in \{0, \dots, n\} \ P(a_i) = b_i.$$

2. Soit $k \in [0, n]$. Expliciter ce polynôme P, que l'on notera L_k , lorsque :

$$\forall i \in [0, \dots, n] \quad b_i = \begin{cases} 0 \text{ si } i \neq k \\ 1 \text{ si } i = k \end{cases}$$

3. Prouver que $\forall p \in \llbracket 0, \dots, n \rrbracket$, $\sum_{k=0}^{n} a_k^p L_k = X^p$.